
OA 3302
Summer 2004

Due: 16 August 2004
Computer Lab 04: RandomLocationMoverManager, Constant Rate Sensor

RandomLocationMoverManager
A Mover Manager’s responsibility is to manage the movement behavior for a single Mover

instance. Each type of Mover Manager has its own rules for this behavior. You have seen the PathMover-
Manager that sends a Mover along a list of waypoints. The RandomLocationMoverManager’s move-
ment algorithm chooses a random point according to two RandomVariate instances, and sends its Mover
to that location. When the Mover arrives, another random destination is chosen, and the process continues
until the RandomLocationMoverManager is told to stop (or the simulation ends).

The RandomLocationMoverManager class is a SimEntityBase so it can be a SimEventLis-
tener to its Mover. Thus, it “knows” when the Mover has reached its destination when it hears the End-
Move(Mover) event. It has the following parameters (private instance variables with setters and getters)::

A Mover - the Mover instance it is managing.
A RandomVariate[] array of length 2 (called nextLocation) that is used to generate the random

locations.1

A boolean to indicate whether the RandomLocationMoverManager should start its cycle on the
Run event (startOnReset).

Also, there is a single state variable (protected with a getter but no setter), a boolean to indicate
whether it is running or not (running).

The constructor should have signature (Mover, RandomVariate[]), and setStartOnReset
should be false by default. There should be setters and getters for all four instance variables. The setter
for the Mover should establish the listening for the new mover and remove the listening from the old
mover (if any). Thus, it should look like this:2

public void setMover(Mover newMover) {
if (mover != null) {

mover.removeSimEventListener(this);
}
mover = newMover;
mover.addSimEventListener(this);

}

For convenience, define a protected method getNextLocation() that returns a random Point2D
instance.3 This return should look like this:
return new Point2D.Double(nextLocation[0].generate(), nextLocation[1].generate());

where nextLocation is the RandomVariate[] array.
The start() method sets running to true and tells the Mover to moveTo a random location.

The stop() method sets running to false and invokes stop() on the Mover. The doRun() method
invokes start() if startOnReset is true. Finally, doEndMove() checks to see whether the Mover
passed in is indeed the Mover belonging to the RandomLocationMoverManager instance. If so, then it
simple tells the Mover to move to another randomly generated location.

1. The setter and getter should clone the array.
2. Also see the code for PathMoverManager
3. You will need to import java.awt.geom.*;

After writing your RandomLocationMoverManager class, test it using random locations uni-
formly distributed in a square 200 x 200. Create a RandomVariate[] array in main() with each element
Uniform(-100, 100). Seed the first RandomVariate with CongruentialSeeds.SEED[0] and the sec-
ond with CongruentialSeeds.SEED[1]. Instantiate two UniformLinearMovers at (-100, -100) and
(100, 100) with speeds 30.0 and 40.0, respectively. Instantiate a RandomLocationMoverManager for
each one, using the same RandomVariate[] array for each Mover Manager. Set startOnReset to true for
each Mover Manager and run the simulation in verbose mode for 15.0 time units. Your output should be as
follows.

Output 1
** Event List -- Starting Simulation **
0.000 Run
0.000 Run
15.000 Stop
 ** End of Event List -- Starting Simulation **

Time: 0.000 Current Event: Run [1]
 ** Event List -- **
0.000 Run
0.000 StartMove {Fred (-100.000,-100.000) [29.419,5.876]}
15.000 Stop
 ** End of Event List -- **

Time: 0.000 Current Event: Run [2]
 ** Event List -- **
0.000 StartMove {Fred (-100.000,-100.000) [29.419,5.876]}
0.000 StartMove {Barney (100.000,100.000) [-28.405,-28.163]}
15.000 Stop
 ** End of Event List -- **

Time: 0.000 Current Event: StartMove {Fred (-100.000,-100.000) [29.419,5.876]}
[1]
 ** Event List -- **
0.000 StartMove {Barney (100.000,100.000) [-28.405,-28.163]}
6.285 EndMove {Fred (-100.000,-100.000) [29.419,5.876]}
15.000 Stop
 ** End of Event List -- **

Time: 0.000 Current Event: StartMove {Barney (100.000,100.000) [-28.405,-28.163]}
[2]
 ** Event List -- **
5.786 EndMove {Barney (100.000,100.000) [-28.405,-28.163]}
6.285 EndMove {Fred (-100.000,-100.000) [29.419,5.876]}
15.000 Stop
 ** End of Event List -- **

Time: 5.786 Current Event: EndMove {Barney (-64.341,-62.936) [3.722,39.826]} [1]
 ** Event List -- **
5.786 StartMove {Barney (-64.341,-62.936) [3.722,39.826]}
6.285 EndMove {Fred (70.205,-66.006) [29.419,5.876]}
15.000 Stop
 ** End of Event List -- **

Time: 5.786 Current Event: StartMove {Barney (-64.341,-62.936) [3.722,39.826]}
[3]
 ** Event List -- **
6.285 EndMove {Fred (70.205,-66.006) [29.419,5.876]}
9.249 EndMove {Barney (-64.341,-62.936) [3.722,39.826]}
15.000 Stop
2

 ** End of Event List -- **

Time: 6.285 Current Event: EndMove {Fred (84.906,-63.069) [12.750,-27.156]} [2]
 ** Event List -- **
6.285 StartMove {Fred (84.906,-63.069) [12.750,-27.156]}
9.249 EndMove {Barney (-62.481,-43.034) [3.722,39.826]}
15.000 Stop
 ** End of Event List -- **

Time: 6.285 Current Event: StartMove {Fred (84.906,-63.069) [12.750,-27.156]}
[4]
 ** Event List -- **
7.098 EndMove {Fred (84.906,-63.069) [12.750,-27.156]}
9.249 EndMove {Barney (-62.481,-43.034) [3.722,39.826]}
15.000 Stop
 ** End of Event List -- **

Time: 7.098 Current Event: EndMove {Fred (95.274,-85.151) [-28.749,8.573]} [3]
 ** Event List -- **
7.098 StartMove {Fred (95.274,-85.151) [-28.749,8.573]}
9.249 EndMove {Barney (-59.455,-10.649) [3.722,39.826]}
15.000 Stop
 ** End of Event List -- **

Time: 7.098 Current Event: StartMove {Fred (95.274,-85.151) [-28.749,8.573]} [5]
 ** Event List -- **
9.249 EndMove {Barney (-59.455,-10.649) [3.722,39.826]}
12.176 EndMove {Fred (95.274,-85.151) [-28.749,8.573]}
15.000 Stop
 ** End of Event List -- **

Time: 9.249 Current Event: EndMove {Barney (-51.450,75.011) [32.474,-23.354]} [4]
 ** Event List -- **
9.249 StartMove {Barney (-51.450,75.011) [32.474,-23.354]}
12.176 EndMove {Fred (33.440,-66.713) [-28.749,8.573]}
15.000 Stop
 ** End of Event List -- **

Time: 9.249 Current Event: StartMove {Barney (-51.450,75.011) [32.474,-23.354]}
[6]
 ** Event List -- **
12.176 EndMove {Fred (33.440,-66.713) [-28.749,8.573]}
12.999 EndMove {Barney (-51.450,75.011) [32.474,-23.354]}
15.000 Stop
 ** End of Event List -- **

Time: 12.176 Current Event: EndMove {Fred (-50.693,-41.626) [18.616,23.525]} [5]
 ** Event List -- **
12.176 StartMove {Fred (-50.693,-41.626) [18.616,23.525]}
12.999 EndMove {Barney (43.584,6.666) [32.474,-23.354]}
15.000 Stop
 ** End of Event List -- **

Time: 12.176 Current Event: StartMove {Fred (-50.693,-41.626) [18.616,23.525]}
[7]
 ** Event List -- **
12.999 EndMove {Barney (43.584,6.666) [32.474,-23.354]}
15.000 Stop
16.596 EndMove {Fred (-50.693,-41.626) [18.616,23.525]}
 ** End of Event List -- **

Time: 12.999 Current Event: EndMove {Barney (70.321,-12.562) [-1.515,39.971]} [6]
3

 ** Event List -- **
12.999 StartMove {Barney (70.321,-12.562) [-1.515,39.971]}
15.000 Stop
16.596 EndMove {Fred (-35.366,-22.257) [18.616,23.525]}
 ** End of Event List -- **

Time: 12.999 Current Event: StartMove {Barney (70.321,-12.562) [-1.515,39.971]}
[8]
 ** Event List -- **
15.000 Stop
15.415 EndMove {Barney (70.321,-12.562) [-1.515,39.971]}
16.596 EndMove {Fred (-35.366,-22.257) [18.616,23.525]}
 ** End of Event List -- **

Time: 15.000 Current Event: Stop [1]
 ** Event List -- **
 << empty >>
 ** End of Event List -- **

ConstantRateSensor and ConstantRateMediator
To implement the constant rate sensor, write a ConstantRateSensor class that subclasses Cook-

ieCutterSensor and adds a parameter meanTimeToDetection (similar to the FooSensor).
Next, write the ConstantRateMediator class. Declare a static (class) variable of type RandomVari-

ate and get an instance of an Exponential (1.0) in the static constructor1. Write a static setter for the seed as
follows:
public static void setSeed(long seed) {

timeToDetect.getRandomNumber().setSeed(seed);
}

Write the doEnterRange() and doExitRange() methods in manners similar to the FooMedia-
tor. The time to detection should be the mean time to detection from the ConstantRateSensor times an
Exponential (1.0) random variate. Let the time from ExitRange to Undetect be 0.0. The time to detect is
given by an Exponential (µ) random variable. Use the fact that if X ~ Exponential (1.0) then µX ~ Expo-
nential (µ).

The test will involve both a ConstantRateSensor and a CookieCutterSensor. On the Mover at (-
100, -100) put a ConstantRateSensor with maximum range 30.0 and mean time to detection of 0.5. On the
other Mover put a CookieCutterSensor with maximum range 50.0. Be sure to register targets and sensors
with an instance of SensorTargetReferee. Also, be sure to add both mediator types to the SensorTargetMe-
diatorFactory. Run for 30.0 time units. Use CongruentialSeeds.SEED[2] for the ConstantRateMe-
diator. A portion of the output is shown below.

Output 2
After moving around for awhile, the first detection event by the ConstantRateSensor on Fred will

detect Barney at time 16.468, as follows
simkit.smdx.SensorTargetReferee
Sensors:
CookieCutterSensor (50.0) [Barney (100.000,100.000) [0.000,0.000]]

1. That is write a method that looks like this:
static {

timeToDetect = RandomVariateFactory.getInstance("Exponential",
new Object[] { new Double(1.0) });

}

4

ConstantRateSensor (30.0) [Fred (-100.000,-100.000) [0.000,0.000]] - 0.5
Targets:
Fred (-100.000,-100.000) [0.000,0.000]
Barney (100.000,100.000) [0.000,0.000]

...

Time: 16.071 Current Event: EnterRange {ConstantRateSensor (30.0) [Fred
(21.831,50.024) [18.616,23.525]] - 0.5, Barney (45.744,68.139) [-31.864,-24.180]} [1]
 ** Event List -- **
16.468 Detection {Contact: [45.744, 68.139]}
16.596 EndMove {Fred (21.831,50.024) [18.616,23.525]}
16.930 ExitRange {ConstantRateSensor (30.0) [Fred (21.831,50.024) [18.616,23.525]] -
0.5, Barney (45.744,68.139) [-31.864,-24.180]}
17.219 ExitRange {CookieCutterSensor (50.0) [Barney (45.744,68.139) [-31.864,-
24.180]], Fred (21.831,50.024) [18.616,23.525]}
18.120 EndMove {Barney (45.744,68.139) [-31.864,-24.180]}
30.000 Stop
 ** End of Event List -- **

Time: 16.468 Current Event: Detection {Contact: [33.122, 58.561]} [2]
 ** Event List -- **
16.596 EndMove {Fred (29.205,59.343) [18.616,23.525]}
16.930 ExitRange {ConstantRateSensor (30.0) [Fred (29.205,59.343) [18.616,23.525]] -
0.5, Barney (33.122,58.561) [-31.864,-24.180]}
17.219 ExitRange {CookieCutterSensor (50.0) [Barney (33.122,58.561) [-31.864,-
24.180]], Fred (29.205,59.343) [18.616,23.525]}
18.120 EndMove {Barney (33.122,58.561) [-31.864,-24.180]}
30.000 Stop
 ** End of Event List -- **

Time: 16.596 Current Event: EndMove {Fred (31.591,62.358) [-23.656,-18.450]} [8]
 ** Event List -- **
16.596 EndMove {ConstantRateSensor (30.0) [Fred (31.591,62.358) [-23.656,-18.450]]
- 0.5}
16.596 StartMove {Fred (31.591,62.358) [-23.656,-18.450]}
16.930 ExitRange {ConstantRateSensor (30.0) [Fred (31.591,62.358) [-23.656,-18.450]]
- 0.5, Barney (29.037,55.461) [-31.864,-24.180]}
17.219 ExitRange {CookieCutterSensor (50.0) [Barney (29.037,55.461) [-31.864,-
24.180]], Fred (31.591,62.358) [-23.656,-18.450]}
18.120 EndMove {Barney (29.037,55.461) [-31.864,-24.180]}
30.000 Stop
 ** End of Event List -- **

Time: 16.596 Current Event: EndMove {ConstantRateSensor (30.0) [Fred (31.591,62.358) [-
23.656,-18.450]] - 0.5} [4]
 ** Event List -- **
16.596 StartMove {Fred (31.591,62.358) [-23.656,-18.450]}
16.930 ExitRange {ConstantRateSensor (30.0) [Fred (31.591,62.358) [-23.656,-18.450]]
- 0.5, Barney (29.037,55.461) [-31.864,-24.180]}
17.219 ExitRange {CookieCutterSensor (50.0) [Barney (29.037,55.461) [-31.864,-
24.180]], Fred (31.591,62.358) [-23.656,-18.450]}
18.120 EndMove {Barney (29.037,55.461) [-31.864,-24.180]}
30.000 Stop
 ** End of Event List -- **
...

Deliverables
Your source code plus verbose output for the final version - just include enough of the output to

show the EnterRange-Detection-ExitRange-Undetection sequence for the ConstantRateSensor.
5

	Computer Lab 04: RandomLocationMoverManager, Constant Rate Sensor
	RandomLocationMoverManager
	Output 1
	ConstantRateSensor and ConstantRateMediator
	Output 2
	Deliverables

